Intro to Robotics

Nayana Suvarna

Examples of Robots

Mobile Robots

Aerial Robots

Walking Robots

Underwater Robots

Industrial Robots

Big Picture

- Interdisciplinary Field
 - Mechanical Engineering
 - Electrical Engineering
 - Software Engineering

• Overarching Concepts

- Perception: How do I see and interpret the environment?
- Localization: Where am I in the world?
- Motion Planning: What is my next goal?
- Controls: How do I get to my next goal?

Mechanical

Mechanical Components: Motors

Broad Overview: Motors convert other forms of energy into mechanical energy

- Different types of electric motors
 - Direct Current (DC) motors
 - Great for continuous rotation and high speed applications
 - Brushless vs Brushed Motors
 - Stepper Motors
 - Great for low speed and high position control applications
 - Servo Motors
 - Great for high speed and high torque applications
 - Limited angle of rotation

Want to learn more? Motor Selection Workshop

Electrical Components: Sensors

Broad Overview: Sensors give us information about the surrounding environment

- LiDAR (Line Detection and Ranging)
 - Emitting a laser light and measuring the reflections
- Radar
 - Emits radio waves to measure distance
- GNSS (Global Navigation Satellite System)/GPS (Global Positioning System)
 - Uses satellites to provide global positioning
- IMU (Inertial measurement Unit)
 - Measures acceleration and rotation
- Cameras
 - Return pictures and videos of surrounding environment

Software

Perception

Broad Overview: how the robot perceives and interprets the environment

- Interpret data from a large variety of sensors
 - Cameras, Lidar (Line Detection and Ranging), Radar, and more
- Utilize computer vision algorithms to interpret data
 - Object Detection, Recognition, and Classification
 - Lanes, Cars, etc

Want to learn more? CS 1674 (Intro to Computer Vision)

Computer Vision Example: Vehicle & Lane Detection

Localization

Broad Overview: How the robot infers where it is in the "world"

- Utilize sensor data to form a belief of where the robot may be in the world
- Accomplished through the use of a Kalman Filter (and it's variants)
 - Estimates the robot's state (position, velocity, etc) over time given a set of measurements
 - Acts similar to a low pass filter on basic level (filters out noise)
 - Prediction and Measurement Phase
 - Predict state \rightarrow Correct state using measurement
- Utilize multiple sensors to increase precision of measurement

Want to learn more? Intro to Kalman Filters

Kalman Filter Example: Voltage

Motion Planning

Broad Overview: How a robot reaches its goal in a fast, and efficient manner

- Use different path planning algorithms to plan movement and avoid collisions
 - Simplest representation is a grid
 - Navigate in "free" space
 - Two common performance metrics: path length and time to solution
 - Find shortest path to goal in fastest time
 - A*, D*, Rapidly-Exploring Random Tree (RRT)

Want to learn more? CMU 16-350 (Planning Techniques for Robotics)

Motion Planning Example: A* Algorithm

ai, .019 (and and 蠖 10 10.0 - and 1000 1 12 am.h â 100 M 6 4,6300 (4.63) A. B. Giange de e 6 .19

Controls

Broad Overview: Signals sent to the robot to perform an action

- Use mathematical models, vehicle state, and goal point to determine optimal output for desired action
 - Simplest model is an inverted pendulum
 - PID, LQR, iLQR, MPC

Want to learn more? ECE 1570 (Robot Controls)

Controls Example: Inverted Pendulum

Putting it All Together

Further Resources

- Arduino
 - <u>Arduino Tutorials</u>
- Robot Operating System (ROS)
 - ROS Workshop
- Other Helpful Resources
 - Robot Academy

Questions?