University of Pittsburgh Robotics and Automation Society

IARC Symposium, July 31, 2018

Mechanical Design

- Mechanical overview
- Roomba Bumper
- Propulsion System

Electrical Systems

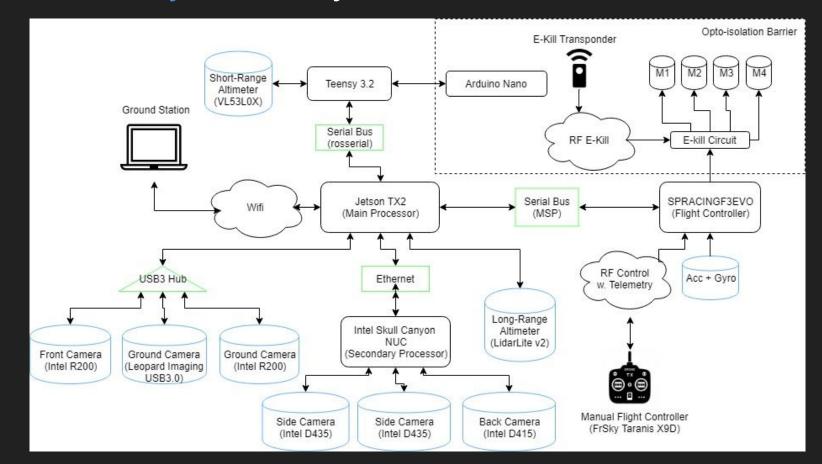
- System Overview
- Computers and Microcontrollers
- Safety Switch

State Estimation and Control

- Motion Control
- Obstacle Detection
- Target Detection
- Position Estimation

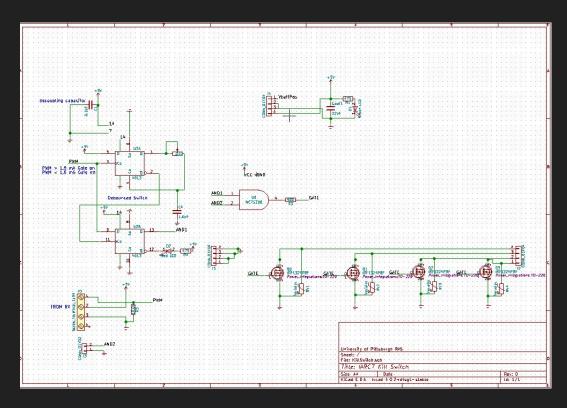
Testing

- Integration Testing
- Half Scale Arena


Presentation Outline

Mechanical Design

- Focus on durability and extensibility
- Laser cut plywood roomba bumper
 - Lightweight and strong
- Carbon fiber center frame
- Quick Facts
 - 4.5kg (10lbs)
 - 7 minute flight time
 - 1.2 meters across
 - 12x6 APC props
 - 25.2V, 10.4 Ah motor battery
 - 2 kW average power usage



Electronic Systems: System Overview

Electronic Systems: Safety Switch

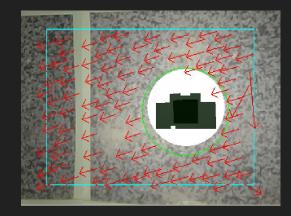
- One-Shot PWM to DC converter
- Capable of 120A peak, 80A continuous without significant heat rise
 - Low Rds-on ensures minimal power waste
- Simple design and construction provides robust operation and no failures to date

State Estimation and Control: Overview

Core Software Components

- Motion Planner and Trajectory Control
- Obstacle Detector and Kalman Filter
- Target Detector and Kalman Filter
- Position Estimation
- Safety Monitor
- Localization Extended Kalman Filter

State Estimation and Control: Position Estimation

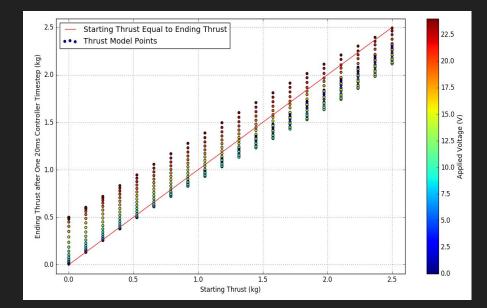

Optical Flow:

- Custom optical flow implementation
- Statistical filter monitors flow health
- Ignores vectors on ground targets

Arena Detection:

- Texture classification using SVM
- 41 filters including color and derivatives
- Linear SVM finds boundary line

Fused with IMU measurements in Extended Kalman Filter


State Estimation and Control: Motion Control

Motion Planner:

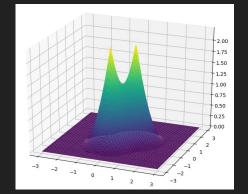
- Architecture for motion primitives
- Support for search based planner

Trajectory Controller:

- PID on velocity with feedforward
- Nonlinear, dynamic thrust model
 - Reduces rotor lag by 40ms
 - Increases thrust slew rate by 4 times
- Applies acceleration setpoints
 - Not supported by current flight controllers
 - Significantly decreases control lag

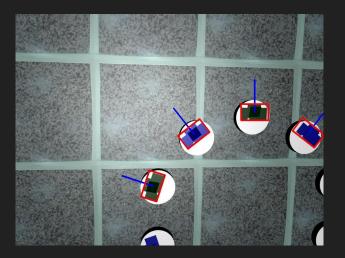
Software: Obstacle Detection and Avoidance

Detection


- Based on depth images received from Intel's R and D series Realsense cameras
- DBSCAN clustering to find individual obstacles

Avoidance

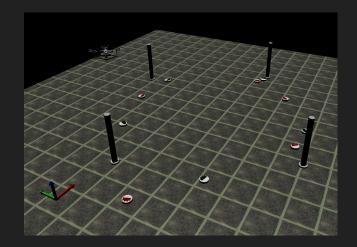
• Potential field to prohibit velocities which would bring the drone too close to any obstacle



Software: Target Detection

- Bottom camera detector
 - Classical computer vision techniques
 - HSV normalization and threshold, morphology operations

- Side camera detector
 - CNN based on modified Tiny YOLO architecture


Testing: Integration

Simulation:

- Uses the MORSE simulator
- Physics, textures, most sensors
- Virtual Roombas

Crazyflie:

- Full software stack run on laptop
- Introduces stochastic variation
- Used primarily for testing controls

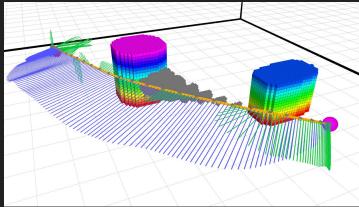
Testing: Quarter Scale Arena

Accomplished Behaviours:

- Stable Trajectory Control
- Arena Boundary Detection
- Search-based trajectory planning for jerk limits
- Target Interaction (Hit and Block)
- Obstacle Avoidance

Thank you to our sponsors!

Rockwell Automation



KDEDirect

Software: Motion Planning

- Planning for various tasks accomplished by a heuristic search based planner
- Accounts for both obstacles within the arena and the dynamic constraints of the drone
- Uses anytime search with bounded sub-optimality to achieve real-time performance

Software: Localization

Vertical

- Long-range lidar
- Short-range lidar
- Accelerometer

Horizontal

- Accelerometer
- Sparse Optical Flow (OpenCV Lucas-Kanade)

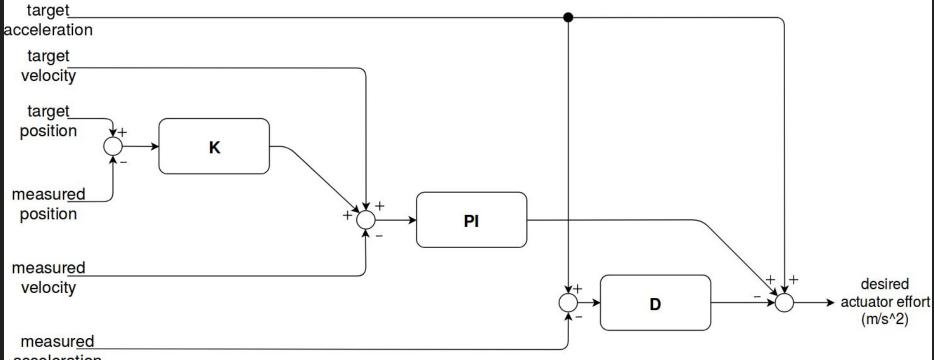
Orientation

- IMU onboard flight controller, fused with Mahony filter
- Grid orientation fused with complementary filter

Fusion

- 15DOF Extended Kalman Filter (robot_localization)
- Complementary filters fusing velocities

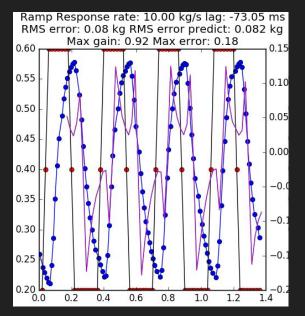
Electronic Systems: Computers and Microcontrollers

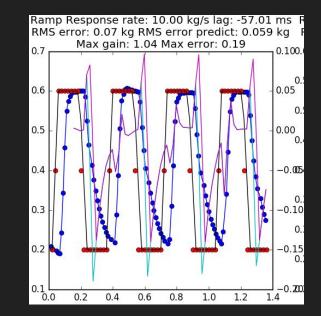

Main computers:

- NVIDIA Jetson TX2
 - Onboard GPU for low latency roomba identification and optical flow
 - CPU used for state estimation, motion planning, and controls
- Intel NUC (i7-6770HQ)
 - High USB bandwidth used to connect
 4 Intel Realsense depth cameras
 - Processes point clouds
 - Estimates obstacle positions

Supporting microcontrollers:

- Seriously Pro Racing F3 EVO
 - Cortex M3 Flight Controller board with integrated IMU
- Teensy 3.2
 - Relays Lidar range finder readings
- Arduino Nano
 - Relays battery voltage over opto-isolated serial link


Motion Control: Height Holding


acceleration

State Estimation and Control: Motion Control

Static Model

Nonlinear Dynamic Model

