International Aerial Robotics Competition Mission 7

2017-2018 Intro Meeting

Meeting Structure

- Intro to IARC
- Subteam Presentations
- Demo
- Short intro meetings with subteam leads

Important Info

- Leads: Aaron, Levi, Quentin, Caroline, Andrew, Liam
- Slack: #iarc7
- Large commitment, **minimum of 8 hours per week**
- Subject areas: Signals, image processing, computer vision, ROS, mechanical simulation, UAV controls, motion planning, power electronics, machine learning, AI
- Competing late July 2018

What is IARC?

- Teams must solve "challenges that are currently impossible for any flying robots owned by government or industry"
- Began with Mission 1 in 1991
- 7th mission began in 2014

What is Mission 7?

- Affectionately named "herding roombas," the goal of this competition is to design a drone that:
 - Is fully autonomous
 - Can interact with robots on the ground to direct them toward a destination
 - Can navigate without reference points like GPS or nearby walls

How'd we do?

- Best System Design
- Most points overall
- Achieved autonomous flight

What's the plan?

- V1.0 Current drone from IARC 2017
- Simulator Built on MORSE, allows us to test higher-level algorithms
- V2.0 Improved design to carry more sensors and cameras

Overview of where we are now

Subteams

4 Subteams, looking to expand to 6

- AI / Perception Aaron Miller, Liam Berti
- Electrical / Controls Levi Bui
- Mechanical

Planning

Levi Burner Caroline Collopy, Quentin Torgerson, Jackie Sharpe Andrew Saba

Future Meeting Structure

- Will have once a week status meetings for everybody
 - Will be sending out a when2meet to schedule it
- Will hold three times a week shop hours
 - Come when it makes sense for you
 - Message in #iarc7 to get sub-team leads you need
- Shop hours:
 - Sunday 4pm-9pm
 Monday 5:30pm-9pm
 Thursday 5:30pm-9pm
- This info will be in the getting started guide

Mechanical

Goals:

- Increased sensor capacity
- Increase strength/reduce weight
- Easier to service
- Design for wires
- Maintain fail-safe behaviors

Prop Guards

Pros:

- Printed for strength
- Designed to fail without breaking carbon fiber
- Drone bounces off walls Cons:
- Ten different parts
- Stress concentration area
- SUPER HEAVY
- Thermal deformation

Center Frame

Pros:

- A normal load to tube's axis breaks plastic parts first
- Is firm during normal usage
- All Carbon Fiber parts are relatively inexpensive

Cons:

- Round tubes = difficult mounting
- Hard to assemble
- Uses gigantic heavy bolts
- Replacing 3D printed parts requires a lot of print time

Shown without top plate

Landing Gear

Pros:

- Springs for shock absorption
- Low friction sliding pads to lessen stress on frame when landing
- Plungers to detect ground contact

Cons:

- Plungers break
- Slider pads/mounting pieces are heavy
- Shock absorption not optimized

Electrical

Batteries, Computers, Motors, Wiring Harness, Sensors...

- Support new computational, propulsion requirements
 - Integrate wiring harness, boards into mechanical design
 - Optimize batteries for payload
- Improve existing electrical elements
 - Improve E-Kill
 - New/Smaller MOSFETs, GaN FETS
 - Miniaturize boards
 - Interfaces for more sensors
 - Un-jank motor voltage monitoring
- Improve and plan for wiring harness

Controls

What is a controller?

- Translates a primitive motion request to reality
 - Receives target speed in m/s translates
 - Pitches drone forward
 - Levels drone out when speed is reached.
- There are several layers of controllers
 - Primitives run in the flight controller
 - Control the pitch, roll, yaw
 - Translation controllers run in Low Level Motion
 - Control velocity
 - Most are PID controllers
 - Use feedforward
 - Thrust modeling to linearize controller output

Controls

This year's goals:

- Replace racing drone FC with PixHawk and ArduPilot
 - Good for larger drones
 - Vastly improved pitch, roll, yaw controllers
 - Needs to not break software stack for V1.0
- Improve translation controllers
 - Currently the controllers are intolerant of sensor latency
 - Need multi-layered acceleration controllers to achieve reliability
 - Support smoother transitions between controller types
- Controls is a fantastic subject area:
 - Combine firmware, signal processing, modeling, and controls
 - Make the real world useable

Planning

What is "planning"

- Using desired targets to determine desired next position, velocities, etc
- Correcting for obstacles/determining "best path" Above LLM sits High Level Motion (HLM)
 - Separate tasks for each high level motion plan
 - Track roomba, hit roomba, height hold...
 - Provides velocity targets for LLM
 - motionplanner.py handles task targets
- iarc_task_action_server.py handles task life cycle Moving Forward:
 - Need obstacle avoidance
 - Improved path planning
 - Better task/state transitions

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Abstracts

Abstracts:

- "Way you and I think"
- Combine multiple tasks to execute even higher level behaviors
 - \circ Ex. takeoff, then track a roomba, then land
- Used for testing of tasks
- Will be utilized/taken over by AI at highest level

Perception

State Estimation

- Fusion of multiple sensors
 - Accelerometer, Optical Flow, Altimeters, Grid Finder/Counter
- Extended Kalman Filter

Perception

Obstacle Detection

- v1.0: Scanning LIDAR
- v2.0: Depth Cameras

Perception

Roomba Localization

- Downward- and side-facing cameras
- Currently using GHT, upgrading to CNN

Artificial Intelligence

Drone must decide which actions to take

- Roomba interaction
- Exploration

Approaches: state machine, calculate approximate

reward function, reinforcement learning (e.g. Q-learning)

Robot Operating System (ROS)

It's like a social network, for sensors and transforms...

- Introduces the "Publisher/Subscriber" model to robots
- Makes systems more flexible
 - ROS communicates over networks
 - Android phone is subscribed to a publisher on AWS, etc
 - Nodes are independent of each other
 - Many subscribers can listen to a publisher
- Officially supports Ubuntu GNU + Linux
 - Experimentally supports Android, Debian, Arch Linux, OS X

Going Forward!

- Use the rest of the meeting to meet sub-team leads and people
- Join our slack!!!! pittras.slack.com
 - Join the #iarc7 channel
- If you want to do something:
 - Talk to your subteam lead
 - Follow the getting started guide: goo.gl/qiU6FM